package cache import ( "crypto/rand" "math" "math/big" insecurerand "math/rand" "os" "runtime" "time" "github.com/petar/GoLLRB/llrb" ) // This is an experimental and unexported (for now) attempt at making a cache // with better algorithmic complexity than the standard one, namely by // preventing write locks of the entire cache when an item is added. As of the // time of writing, the overhead of selecting buckets results in cache // operations being about twice as slow as for the standard cache with small // total cache sizes, and faster for larger ones. // // See cache_test.go for a few benchmarks. type unexportedShardedCache struct { *shardedCache } type shardedCache struct { seed uint32 m uint32 cs []*cache janitor *shardedJanitor } // djb2 with better shuffling. 5x faster than FNV with the hash.Hash overhead. func djb33(seed uint32, k string) uint32 { var ( l = uint32(len(k)) d = 5381 + seed + l i = uint32(0) ) // Why is all this 5x faster than a for loop? if l >= 4 { for i < l-4 { d = (d * 33) ^ uint32(k[i]) d = (d * 33) ^ uint32(k[i+1]) d = (d * 33) ^ uint32(k[i+2]) d = (d * 33) ^ uint32(k[i+3]) i += 4 } } switch l - i { case 1: case 2: d = (d * 33) ^ uint32(k[i]) case 3: d = (d * 33) ^ uint32(k[i]) d = (d * 33) ^ uint32(k[i+1]) case 4: d = (d * 33) ^ uint32(k[i]) d = (d * 33) ^ uint32(k[i+1]) d = (d * 33) ^ uint32(k[i+2]) } return d ^ (d >> 16) } func (sc *shardedCache) bucket(k string) *cache { return sc.cs[djb33(sc.seed, k)%sc.m] } func (sc *shardedCache) Set(k string, x interface{}, d time.Duration) { sc.bucket(k).Set(k, x, d) } func (sc *shardedCache) Add(k string, x interface{}, d time.Duration) error { return sc.bucket(k).Add(k, x, d) } func (sc *shardedCache) Replace(k string, x interface{}, d time.Duration) error { return sc.bucket(k).Replace(k, x, d) } func (sc *shardedCache) Get(k string) (interface{}, bool) { return sc.bucket(k).Get(k) } func (sc *shardedCache) Increment(k string, n int64) error { return sc.bucket(k).Increment(k, n) } func (sc *shardedCache) IncrementFloat(k string, n float64) error { return sc.bucket(k).IncrementFloat(k, n) } func (sc *shardedCache) Decrement(k string, n int64) error { return sc.bucket(k).Decrement(k, n) } func (sc *shardedCache) Delete(k string) { sc.bucket(k).Delete(k) } func (sc *shardedCache) DeleteExpired() { for _, v := range sc.cs { v.DeleteExpired() } } // Returns the items in the cache. This may include items that have expired, // but have not yet been cleaned up. If this is significant, the Expiration // fields of the items should be checked. Note that explicit synchronization // is needed to use a cache and its corresponding Items() return values at // the same time, as the maps are shared. func (sc *shardedCache) Items() []map[string]Item { res := make([]map[string]Item, len(sc.cs)) for i, v := range sc.cs { res[i] = v.Items() } return res } func (sc *shardedCache) Flush() { for _, v := range sc.cs { v.Flush() } } type shardedJanitor struct { Interval time.Duration stop chan bool } func (j *shardedJanitor) Run(sc *shardedCache) { j.stop = make(chan bool) tick := time.Tick(j.Interval) for { select { case <-tick: sc.DeleteExpired() case <-j.stop: return } } } func stopShardedJanitor(sc *unexportedShardedCache) { sc.janitor.stop <- true } func runShardedJanitor(sc *shardedCache, ci time.Duration) { j := &shardedJanitor{ Interval: ci, } sc.janitor = j go j.Run(sc) } func newShardedCache(n int, de time.Duration) *shardedCache { max := big.NewInt(0).SetUint64(uint64(math.MaxUint32)) rnd, err := rand.Int(rand.Reader, max) var seed uint32 if err != nil { os.Stderr.Write([]byte("WARNING: go-cache's newShardedCache failed to read from the system CSPRNG (/dev/urandom or equivalent.) Your system's security may be compromised. Continuing with an insecure seed.\n")) seed = insecurerand.Uint32() } else { seed = uint32(rnd.Uint64()) } sc := &shardedCache{ seed: seed, m: uint32(n), cs: make([]*cache, n), } for i := 0; i < n; i++ { c := &cache{ defaultExpiration: de, items: map[string]Item{}, sortedItems: llrb.New(), } sc.cs[i] = c } return sc } func unexportedNewSharded(defaultExpiration, cleanupInterval time.Duration, shards int) *unexportedShardedCache { if defaultExpiration == 0 { defaultExpiration = -1 } sc := newShardedCache(shards, defaultExpiration) SC := &unexportedShardedCache{sc} if cleanupInterval > 0 { runShardedJanitor(sc, cleanupInterval) runtime.SetFinalizer(SC, stopShardedJanitor) } return SC }