go-cache/cache.go

343 lines
9.0 KiB
Go

package cache
// go-cache is an in-memory key:value store/cache similar to memcached that is
// suitable for applications running on a single machine. Any object can be stored,
// for a given duration or forever, and the cache can be used safely by multiple
// goroutines.
//
// == Installation
// goinstall github.com/pmylund/go-cache
//
// == Usage
// import "github.com/pmylund/go-cache"
//
// // Create a cache with a default expiration time of 5 minutes, and which
// // purges expired items every 30 seconds
// c := cache.New(5*time.Minute, 30*time.Second)
//
// // Set the value of the key "foo" to "bar", with the default expiration time
// c.Set("foo", "bar", 0)
//
// // Set the value of the key "baz" to "yes", with no expiration time
// // (the item won't be removed until it is re-set, or removed using
// // c.Delete("baz")
// c.Set("baz", "yes", -1)
//
// // Get the string associated with the key "foo" from the cache
// foo, found := c.Get("foo")
// if found {
// fmt.Println(foo)
// }
//
// // Since Go is statically typed, and cache values can be anything, type
// // assertion is needed when values are being passed to functions that don't
// // take arbitrary types, (i.e. interface{}). The simplest way to do this for
// // values which will only be used once--e.g. for passing to another
// // function--is:
// foo, found := c.Get("foo")
// if found {
// MyFunction(foo.(string))
// }
//
// // This gets tedious if the value is used several times in the same function.
// // You might do either of the following instead:
// if x, found := c.Get("foo"); found {
// foo := x.(string)
// ...
// }
// // or
// var foo string
// if x, found := c.Get("foo"); found {
// foo = x.(string)
// }
// ...
// // foo can then be passed around freely as a string
//
// // Want performance? Store pointers!
// c.Set("foo", &MyStruct, 0)
// if x, found := c.Get("foo"); found {
// foo := x.(*MyStruct)
// ...
// }
//
// // If you store a reference type like a pointer, slice, map or channel, you
// // do not need to run Set if you modify the underlying data. The cache does
// // not serialize its data, so if you modify a struct whose pointer you've
// // stored in the cache, retrieving that pointer with Get will point you to
// // the same data:
// foo := &MyStruct{Num: 1}
// c.Set("foo", foo, 0)
// ...
// x, _ := c.Get("foo")
// foo := x.(*MyStruct)
// fmt.Println(foo.Num)
// ...
// foo.Num++
// ...
// x, _ := c.Get("foo")
// foo := x.(*MyStruct)
// foo.Println(foo.Num)
//
// // will print:
// 1
// 2
import (
"fmt"
"reflect"
"runtime"
"sync"
"time"
)
type Cache struct {
*cache
// If this is confusing, see the comment at the bottom of the New() function
}
type cache struct {
DefaultExpiration time.Duration
Items map[string]*Item
mu *sync.Mutex
janitor *janitor
}
type Item struct {
Object interface{}
Expiration *time.Time
}
type janitor struct {
Interval time.Duration
stop chan bool
}
// Adds an item to the cache, replacing any existing item. If the duration is 0, the
// cache's default expiration time is used. If it is -1, the item never expires.
func (c *cache) Set(k string, x interface{}, d time.Duration) {
c.mu.Lock()
defer c.mu.Unlock()
c.set(k, x, d)
}
func (c *cache) set(k string, x interface{}, d time.Duration) {
var e *time.Time
if d == 0 {
d = c.DefaultExpiration
}
if d > 0 {
t := time.Now().Add(d)
e = &t
}
c.Items[k] = &Item{
Object: x,
Expiration: e,
}
}
// Adds an item to the cache only if an item doesn't already exist for the given key,
// or if the existing item has expired. Returns an error if not.
func (c *cache) Add(k string, x interface{}, d time.Duration) error {
c.mu.Lock()
defer c.mu.Unlock()
_, found := c.get(k)
if found {
return fmt.Errorf("Item %s already exists", k)
}
c.set(k, x, d)
return nil
}
// Sets a new value for the cache item only if it already exists. Returns an error if
// it does not.
func (c *cache) Replace(k string, x interface{}, d time.Duration) error {
c.mu.Lock()
defer c.mu.Unlock()
_, found := c.get(k)
if !found {
return fmt.Errorf("Item %s doesn't exist", k)
}
c.set(k, x, d)
return nil
}
// Gets an item from the cache. Returns the item or nil, and a bool indicating whether
// the given key was found in the cache.
func (c *cache) Get(k string) (interface{}, bool) {
c.mu.Lock()
defer c.mu.Unlock()
return c.get(k)
}
func (c *cache) get(k string) (interface{}, bool) {
item, found := c.Items[k]
if !found {
return nil, false
}
if item.Expired() {
c.delete(k)
return nil, false
}
return item.Object, true
}
// Increment an item of type int, int8, int16, int32, int64, uintptr, uint, uint8,
// uint32, uint64, float32 or float64 by n. Returns an error if the item's value is
// not an integer, if it was not found, or if it is not possible to increment it by
// n. Passing a negative number will cause the item to be decremented.
func (c *cache) IncrementFloat(k string, n float64) error {
c.mu.Lock()
defer c.mu.Unlock()
v, found := c.Items[k]
if !found || v.Expired() {
return fmt.Errorf("Item not found")
}
t := reflect.TypeOf(v.Object)
switch t.Kind() {
default:
return fmt.Errorf("The value of %s is not an integer", k)
case reflect.Uint:
v.Object = v.Object.(uint) + uint(n)
case reflect.Uintptr:
v.Object = v.Object.(uintptr) + uintptr(n)
case reflect.Uint8:
v.Object = v.Object.(uint8) + uint8(n)
case reflect.Uint16:
v.Object = v.Object.(uint16) + uint16(n)
case reflect.Uint32:
v.Object = v.Object.(uint32) + uint32(n)
case reflect.Uint64:
v.Object = v.Object.(uint64) + uint64(n)
case reflect.Int:
v.Object = v.Object.(int) + int(n)
case reflect.Int8:
v.Object = v.Object.(int8) + int8(n)
case reflect.Int16:
v.Object = v.Object.(int16) + int16(n)
case reflect.Int32:
v.Object = v.Object.(int32) + int32(n)
case reflect.Int64:
v.Object = v.Object.(int64) + int64(n)
case reflect.Float32:
v.Object = v.Object.(float32) + float32(n)
case reflect.Float64:
v.Object = v.Object.(float64) + n
}
return nil
}
// Increment an item of type int, int8, int16, int32, int64, uintptr, uint, uint8,
// uint32, or uint64, float32 or float64 by n. Returns an error if the item's value
// is not an integer, if it was not found, or if it is not possible to increment it
// by n. Passing a negative number will cause the item to be decremented.
func (c *cache) Increment(k string, n int64) error {
return c.IncrementFloat(k, float64(n))
}
// Decrement an item of type int, int8, int16, int32, int64, uintptr, uint, uint8,
// uint32, or uint64, float32 or float64 by n. Returns an error if the item's value
// is not an integer, if it was not found, or if it is not possible to decrement it
// by n.
func (c *cache) Decrement(k string, n int64) error {
return c.Increment(k, n*-1)
}
// Deletes an item from the cache. Does nothing if the item does not exist in the cache.
func (c *cache) Delete(k string) {
c.mu.Lock()
defer c.mu.Unlock()
c.delete(k)
}
func (c *cache) delete(k string) {
delete(c.Items, k)
}
// Deletes all expired items from the cache.
func (c *cache) DeleteExpired() {
c.mu.Lock()
defer c.mu.Unlock()
for k, v := range c.Items {
if v.Expired() {
c.delete(k)
}
}
}
// Deletes all items from the cache.
func (c *cache) Flush() {
c.mu.Lock()
defer c.mu.Unlock()
c.Items = map[string]*Item{}
}
// Returns true if the item has expired.
func (i *Item) Expired() bool {
if i.Expiration == nil {
return false
}
return i.Expiration.Before(time.Now())
}
func (j *janitor) Run(c *cache) {
j.stop = make(chan bool)
tick := time.Tick(j.Interval)
for {
select {
case <-tick:
c.DeleteExpired()
case <-j.stop:
return
}
}
}
func (j *janitor) Stop() {
j.stop <- true
}
func stopJanitor(c *Cache) {
c.janitor.Stop()
}
// Returns a new cache with a given default expiration duration and default cleanup
// interval. If the expiration duration is less than 1, the items in the cache never
// expire and must be deleted manually. If the cleanup interval is less than one,
// expired items are not deleted from the cache before their next lookup or before
// calling DeleteExpired.
func New(de, ci time.Duration) *Cache {
if de == 0 {
de = -1
}
c := &cache{
DefaultExpiration: de,
Items: map[string]*Item{},
mu: &sync.Mutex{},
}
if ci > 0 {
j := &janitor{
Interval: ci,
}
c.janitor = j
go j.Run(c)
}
// This trick ensures that the janitor goroutine (which--granted it was enabled--is
// running DeleteExpired on c forever) does not keep the returned C object from being
// garbage collected. When it is garbage collected, the finalizer stops the janitor
// goroutine, after which c is collected.
C := &Cache{c}
if ci > 0 {
runtime.SetFinalizer(C, stopJanitor)
}
return C
}